Distributed Learning of Gaussian Graphical Models via Marginal Likelihoods

نویسندگان

  • Zhaoshi Meng
  • Dennis L. Wei
  • Ami Wiesel
  • Alfred O. Hero
چکیده

In this talk, I will introduce our recent work on a distributed estimation framework of the inverse covariance matrix, also called the concentration matrix, in Gaussian graphical models. Traditional centralized estimation often requires iterative and expensive global inference and is therefore difficult in large distributed networks. In this work, we propose a general framework for distributed estimation based on a maximum marginal likelihood (MML) approach. Each node independently computes a local estimate by maximizing a marginal likelihood defined with respect to data collected from its local neighborhood. Due to the non-convexity of the MML problem, we derive and consider solving a convex relaxation. The local estimates are then combined into a global estimate without the need for iterative messagepassing between neighborhoods. We prove that this relaxed MML estimator is asymptotically consistent. Through numerical experiments on several synthetic and real-world data sets, we demonstrate that the two-hop version of the proposed estimator is significantly better than the one-hop version, and nearly closes the gap to the centralized maximum likelihood estimator in many situations. I will also briefly discuss some theoretical properties of this distributed estimator if time permits. This work is a collaboration with Dr. Dennis Wei, Prof Ami Wiesel, and Prof Alfred Hero.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Statistical Learning with Truncated Gaussian Graphical Models

We introduce the truncated Gaussian graphical model (TGGM) as a novel framework for designing statistical models for nonlinear learning. A TGGM is a Gaussian graphical model (GGM) with a subset of variables truncated to be nonnegative. The truncated variables are assumed latent and integrated out to induce a marginal model. We show that the variables in the marginal model are non-Gaussian distr...

متن کامل

A Stick-Breaking Likelihood for Categorical Data Analysis with Latent Gaussian Models

The development of accurate models and efficient algorithms for the analysis of multivariate categorical data are important and longstanding problems in machine learning and computational statistics. In this paper, we focus on modeling categorical data using Latent Gaussian Models (LGMs). We propose a novel logistic stick-breaking likelihood function for categorical LGMs that can exploit recent...

متن کامل

Learning Gaussian Graphical Models With Fractional Marginal Pseudo-likelihood

We propose a Bayesian approximate inference method for learning the dependence structure of a Gaussian graphical model. Using pseudo-likelihood, we derive an analytical expression to approximate the marginal likelihood for an arbitrary graph structure without invoking any assumptions about decomposability. The majority of the existing methods for learning Gaussian graphical models are either re...

متن کامل

Bayesian structural learning and estimation in Gaussian graphical models

We propose a new stochastic search algorithm for Gaussian graphical models called the mode oriented stochastic search. Our algorithm relies on the existence of a method to accurately and efficiently approximate the marginal likelihood associated with a graphical model when it cannot be computed in closed form. To this end, we develop a new Laplace approximation method to the normalizing constan...

متن کامل

Graphical Models, Exponential Families, and Variational Inference

The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building large-scale multivariate statistical models. Graphical models have become a focus of research in many statistical, computational and mathematical fields, including bioinformatics, communication theory, statistical physics, combinatorial optimizati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013